this post was submitted on 12 Jul 2024
1 points (100.0% liked)

Mathematik

92 readers
5 users here now

Community für Austausch zum Thema Mathematik.

Wikipedia: "Die Mathematik [...] ist eine Formalwissenschaft, die aus der Untersuchung von geometrischen Figuren und dem Rechnen mit Zahlen entstand. Für Mathematik gibt es keine allgemein anerkannte Definition; heute wird sie üblicherweise als eine Wissenschaft beschrieben, die durch logische Definitionen selbstgeschaffene abstrakte Strukturen mittels der Logik auf ihre Eigenschaften und Muster untersucht."

Verwandte Communities:

Netiquette wird vorausgesetzt. Gepflegt wird ein respektvoller Umgang - ohne Hass, Hetze, Diskriminierung.

Bitte beachtet die Regeln von Feddit.org.

Attribution

Bot-InfoSiehe https://feddit.org/post/1865816


founded 5 months ago
MODERATORS
1
submitted 4 months ago* (last edited 4 months ago) by marv99 to c/mathematik
 

Alternativer Link @archive.org

Also machten er [Thomas Hull] und [Inna] Zakharevich sich daran zu beweisen, dass man aus Origami einen Computer bauen kann. Zunächst mussten sie die Ein- und Ausgaben von Computern sowie grundlegende logische Operationen wie AND und OR als Papierfalten kodieren. Dann müssten sie nur noch zeigen, dass ihr Schema ein anderes Rechenmodell (von dem bereits bekannt ist, dass es Turing-vollständig ist) simulieren kann.

Seit den späten 1990er Jahren ist bekannt, dass ein einfacheres eindimensionales Analogon von Conways »Game of Life« Turing-vollständig ist. Hull und Zakharevich haben herausgefunden, wie sich diese Version durch logische Operationen ausdrücken lässt und konnten das für ihr Vorhaben nutzen. »Am Ende brauchten wir nur vier Gatter: AND, OR, NAND und NOR«, sagt Zakharevich.

[...] Nachdem es ihr und Hull gelungen war, ihre Gadgets zusammenzufügen, konnten sie alles, was sie brauchten, in Papierfalten kodieren und damit zeigen, dass Origami Turing-vollständig ist.

Origami-Anwendungen:

no comments (yet)
sorted by: hot top controversial new old
there doesn't seem to be anything here