this post was submitted on 03 Aug 2023
0 points (NaN% liked)

No Stupid Questions

35258 readers
1478 users here now

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That's it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.



Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.



Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

founded 1 year ago
MODERATORS
 

What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel's incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham's Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don't even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 10^10^10^10^10^10^10^10^10^10^10^10^10^10^10 (10s are stacked on each other)
  • Σ(17) > Graham's Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

top 8 comments
sorted by: hot top controversial new old
[–] BourneHavoc@lemmy.world 0 points 1 year ago (1 children)

I came here to find some cool, mind-blowing facts about math and have instead confirmed that I'm not smart enough to have my mind blown. I am familiar with some of the words used by others in this thread, but not enough of them to understand, lol.

[–] Maruki_Hurakami@lemm.ee 0 points 1 year ago (1 children)

Same here! Great post but I'm out! lol

[–] Ziro427@lemmy.world 0 points 1 year ago (1 children)

Nonsense! I can blow both your minds without a single proof or mathematical symbol, observe!

There are different sizes of infinity.

Think of integers, or whole numbers; 1, 2, 3, 4, 5 and so on. How many are there? Infinite, you can always add one to your previous number.

Now take odd numbers; 1, 3, 5, 7, and so on. How many are there? Again, infinite because you just add 2 to the previous odd number and get a new odd number.

Both of these are infinite, but the set of numbers containing odd numbers is by definition smaller than the set of numbers containing all integers, because it doesn't have the even numbers.

But they are both still infinite.

[–] Jenztsch@feddit.de 0 points 1 year ago* (last edited 1 year ago)

Your fact is correct, but the mind-blowing thing about infinite sets is that they go against intuition.

Even if one might think that the number of odd numbers is strictly less than the number of all natural numbers, these two sets are in fact of the same size. With the mapping n |-> 2*n - 1 you can map each natural number to a different odd number and you get every odd number with this (such a function is called a bijection), so the sets are per definition of the same size.

To get really different "infinities", compare the natural numbers to the real numbers. Here you can't create a map which gets you all real numbers, so there are "more of them".

[–] betheydocrime@lemmy.world 0 points 1 year ago* (last edited 1 year ago) (1 children)

For me, personally, it's the divisible-by-three check. You know, the little shortcut you can do where you add up the individual digits of a number and if the resulting sum is divisible by three, then so is the original number.

That, to me, is black magic fuckery. Much like everything else in this thread I have no idea how it works, but unlike everything else in this thread it's actually a handy trick that I use semifrequently

[–] jonc211@programming.dev 1 points 1 year ago* (last edited 1 year ago)

That one’s actually really easy to prove numerically.

Not going to type out a full proof here, but here’s an example.

Let’s look at a two digit number for simplicity. You can write any two digit number as 10*a+b, where a and b are the first and second digits respectively.

E.g. 72 is 10 * 7 + 2. And 10 is just 9+1, so in this case it becomes 72=(9 * 7)+7+2

We know 9 * 7 is divisible by 3 as it’s just 3 * 3 * 7. Then if the number we add on (7 and 2) also sum to a multiple of 3, then we know the entire number is a multiple of 3.

You can then extend that to larger numbers as 100 is 99+1 and 99 is divisible by 3, and so on.

[–] ArchmageAzor@lemmy.world 0 points 1 year ago* (last edited 1 year ago)

I find the logistic map to be fascinating. The logistic map is a simple mathematical equation that surprisingly appears everywhere in nature and social systems. It is a great representation of how complex behavior can emerge from a straightforward rule. Imagine a population of creatures with limited resources that reproduce and compete for those resources. The logistic map describes how the population size changes over time as a function of its current size, and it reveals fascinating patterns. When the population is small, it grows rapidly due to ample resources. However, as it approaches a critical point, the growth slows, and competition intensifies, leading to an eventual stable population. This concept echoes in various real-world scenarios, from describing the spread of epidemics to predicting traffic jams and even modeling economic behaviors. It's used by computers to generate random numbers, because a computer can't actually generate truly random numbers. Veritasium did a good video on it: https://www.youtube.com/watch?v=ovJcsL7vyrk

I find it fascinating how it permeates nature in so many places. It's a universal constant, but one we can't easily observe.

[–] ribakau@lemmy.world 0 points 1 year ago

Fermat's Last Theorem

x^n + y^n = z^n has no solutions where n > 2 and x, y and z are all natural numbers. It's hard to believe that, knowing that it has an infinite number of solutions where n = 2.

Pierre de Format, after whom this theorem was named, famously claimed to have had a proof by leaving the following remark in some book that he owned: "I have a proof of this theorem, but there is not enough space in this margin". It took mathematicians several hundred years to actually find the proof.