this post was submitted on 02 Aug 2023
0 points (NaN% liked)
Technology
59333 readers
5121 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I was excited for the recent advancements in AI, but seems the area has hit another wall. Seems it is best to be used for automating very simple tasks, or at best used as a guiding tool for professionals (ie, medicine, SWE, …)
Hallucinations is common for humans as well. It's just people who believe they know stuff they really don't know.
We have alternative safeguards in place. It's true however that current llm generation has its limitations
Sure, but these things exists as fancy story tellers. They understand language patterns well enough to write convincing language, but they don't understand what they're saying at all.
The metaphorical human equivalent would be having someone write a song in a foreign language they barely understand. You can get something that sure sounds convincing, sounds good even, but to someone who actually speaks Spanish it's nonsense.
GPT can write and edit code that works. It simply can't be true that it's solely doing language patterns with no semantic understanding.
To fix your analogy: the Spanish speaker will happily sing along. They may notice the occasional odd turn of phrase, but the song as a whole is perfectly understandable.
Edit: GPT can literally write songs that make sense. Even in Spanish. A metaphor aiming to elucidate a deficiency probably shouldn't use an example that the system is actually quite proficient at.
Because it can look up code for this specific problem in its enormous training data? It doesnt need to understand the concepts behind it as long as the problem is specific enough to have been solved already.