this post was submitted on 10 Aug 2024
692 points (98.2% liked)

Science Memes

11205 readers
2466 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] SanndyTheManndy@lemmy.world 1 points 3 months ago (3 children)

What really are gravitational waves? Are they like electromagnetic waves? Do they cause orbital decay? I have so many questions.

[–] observantTrapezium@lemmy.ca 3 points 3 months ago (1 children)

They are quite similar to electromagnetic waves, but also quite different. They are produced by masses accelerating (just like EM waves are produced by charges accelerating), and indeed cause orbital decay. But this orbital decay is only important in relativistic systems (so the Earth, which is orbiting the sun at 0.0001 the speed of light, is not going to fall into the sun because of gravitational waves).

[–] psud@aussie.zone 1 points 3 months ago (1 children)

Surely they're more like ocean waves; EM waves are electric and magnetic fields pulling each other up by their boot straps. Gravity waves are distortions in spacetime

[–] observantTrapezium@lemmy.ca 1 points 3 months ago

EM and gravitational waves are seen as analogous because as I wrote, they are produced by acceleration of charges and masses, respectively. The physics behind them is very different (described by Maxwell's equations for EM and Einstein field equations for GW), but all systems that have waves in them (including sound in the air, waves on the surface of water etc.) can be approximated as linear for small perturbations, which means that they satisfy the wave equation at that regime.

[–] SpacetimeMachine@lemmy.world 2 points 3 months ago

I highly suggest you look up PBS spacetime on YouTube. They have an incredible amount of very informative videos on black holes and gravitational waves. As well as pretty much any other astrophysics topic you can think of (and many you can't!)

[–] CheeseNoodle@lemmy.world 2 points 3 months ago

Gravitational waves do cause orbital decay as the energy required to create them comes from the objects own momentumn.