this post was submitted on 16 May 2024
3 points (100.0% liked)

Daily Maths Challenges

189 readers
1 users here now

Share your cool maths problems.



Complete a challenge:


Post a challenge:


Feel free to contribute to a series by DMing the OP, or start your own challenge series.

founded 6 months ago
MODERATORS
 
  • Show that the infinite multiplication (1+1/1)(1+1/2)(1+1/3)... does not converge.
you are viewing a single comment's thread
view the rest of the comments
[–] Successful_Try543@feddit.de 0 points 5 months ago* (last edited 5 months ago)

::: spoiler solution Isn't this already the result of your 1st formula? As the denominator of the last fraction you wrote down, (n+1)/n, cancels out with the counter of the one right before, n/(n-1), which you didn't write down. Thus the whole product up to the nth term reads after cancellation of neighbouring counters and denominator pairs (n+1)/1 →∞ when n→∞.