this post was submitted on 16 Dec 2024
7 points (76.9% liked)
Advent Of Code
987 readers
15 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2024
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2024 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
ah well, my idea is at high level view. Here is a naive approach that should accomplish this. Not sure how else I would accomplish this without more thought put in to make it faster:
[ Paste ]
edit: whoops, sorry had broke the regex string and had to check for E and S is not deleted lol
This is how the first example would look like:
This is how the second example would look like:
for this challenge, it will only have a more noticeable improvement on larger maps, and especially effective if there are no loops! (i.e. one path) because it would just remove all paths that will lead to a dead end.
For smaller maps, there is no improvement or worse performance as there is not enough dead ends for any search algorithm to waste enough time on. So for more completeness sake, you would make a check to test various sizes with various amount of dead ends and find the optimal map size for where it would make sense to try to fill in all dead ends with walls. Also, when you know a maze would only have one path, then this is more optimal than any path finding algorithm, that is if the map is big enough. That is because you can just find the path fast enough that filling in dead ends is not needed and can just path find it.
for our input, I think this would not help as the map should NOT be large enough. This is naive approach is too costly. It would probably be better if there is a faster approach than this naive approach.
actually, testing this naive approach on the smaller examples, it does have a slight edge over not filling in dead ends. This means that the regex is likely slowing down as the map get larger. so something that can find dead ends faster would be a better choice than the one line regex we have right now.
I guess location of both S and E for the input does matter, because the maze map could end up with S and E being close enough that most, if not all, dead ends are never wasting the time of the Dijkstra's algorithm. however, my input had S and E being on opposite corners. So the regex is likely the culprit in why the larger map makes filling in dead ends slower.
if you notice from the profiler output, on the smaller examples, the naive approach makes a negligible loss in time and improves the time by a few tenths of a millisecond for your algorithm to do both part1 and part 2. however, on the larger input, the naive approach starts to take a huge hit and loses about 350 ms to 400 ms on filling in dead ends, while only improving the time of your algorithm by 90 ms. while filling in dead ends does improve performance for your algorithm, it just has too much overhead. That means that with a less naive approach, there would be a significant way to improve time on the solving algorithm.