this post was submitted on 13 Dec 2024
18 points (90.9% liked)

Advent Of Code

987 readers
15 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 13: Claw Contraption

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] VegOwOtenks@lemmy.world 4 points 2 weeks ago* (last edited 2 weeks ago)

Haskell

Pen and Paper solved these equations for me.

import Control.Arrow

import qualified Data.Char as Char
import qualified Data.List as List
import qualified Data.Maybe as Maybe


window6 :: [Int] -> [[Int]]
window6 [] = []
window6 is = List.splitAt 6 
        >>> second window6
        >>> uncurry (:)
        $ is

parse :: String -> [[Int]]
parse s = window6 . map read . words . List.filter ((Char.isDigit &&& Char.isSpace) >>> uncurry (||)) $ s

solveEquation (ax:ay:bx:by:tx:ty:[]) transformT
        | (aNum `mod` aDenom) /= 0   = Nothing
        | (bNum `mod` bDenom) /= 0   = Nothing
        | otherwise                  = Just (abs $ aNum `div` aDenom, abs $ bNum `div` bDenom)
        where
                tx' = transformT tx
                ty' = transformT ty
                aNum   = (bx*ty')  - (by*tx')
                aDenom = (ax*by)   - (bx*ay)
                bNum   = (ax*ty')  - (ay*tx')
                bDenom = (ax*by)   - (bx*ay)

part1 = map (flip solveEquation id)
        >>> Maybe.catMaybes
        >>> map (first (*3))
        >>> map (uncurry (+))
        >>> sum
part2 = map (flip solveEquation (+ 10000000000000))
        >>> Maybe.catMaybes
        >>> map (first (*3))
        >>> map (uncurry (+))
        >>> sum

main = getContents
        >>= print
        . (part1 &&& part2)
        . parse

(Edit: coding style)