this post was submitted on 14 Oct 2024
18 points (100.0% liked)
Python
6392 readers
22 users here now
Welcome to the Python community on the programming.dev Lemmy instance!
๐ Events
Past
November 2023
- PyCon Ireland 2023, 11-12th
- PyData Tel Aviv 2023 14th
October 2023
- PyConES Canarias 2023, 6-8th
- DjangoCon US 2023, 16-20th (!django ๐ฌ)
July 2023
- PyDelhi Meetup, 2nd
- PyCon Israel, 4-5th
- DFW Pythoneers, 6th
- Django Girls Abraka, 6-7th
- SciPy 2023 10-16th, Austin
- IndyPy, 11th
- Leipzig Python User Group, 11th
- Austin Python, 12th
- EuroPython 2023, 17-23rd
- Austin Python: Evening of Coding, 18th
- PyHEP.dev 2023 - "Python in HEP" Developer's Workshop, 25th
August 2023
- PyLadies Dublin, 15th
- EuroSciPy 2023, 14-18th
September 2023
- PyData Amsterdam, 14-16th
- PyCon UK, 22nd - 25th
๐ Python project:
- Python
- Documentation
- News & Blog
- Python Planet blog aggregator
๐ Python Community:
- #python IRC for general questions
- #python-dev IRC for CPython developers
- PySlackers Slack channel
- Python Discord server
- Python Weekly newsletters
- Mailing lists
- Forum
โจ Python Ecosystem:
๐ Fediverse
Communities
- #python on Mastodon
- c/django on programming.dev
- c/pythorhead on lemmy.dbzer0.com
Projects
- Pythรถrhead: a Python library for interacting with Lemmy
- Plemmy: a Python package for accessing the Lemmy API
- pylemmy pylemmy enables simple access to Lemmy's API with Python
- mastodon.py, a Python wrapper for the Mastodon API
Feeds
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Yes it is correct. TLDR; threads run one code at the time, but can access same data. processes is like running python many times, and can run code simultaneously, but sharing data is cumbersome.
If you use multiple threads, they all run on the same python instance, and they can share memory (i.e. objects/variables can be shared). Because of GIL (explained by other comment), the threads cannot run at the same time. This is OK if you are IO bound, but not CPU bound
If you use multiprocessing, it is like running python (from terminal) multiple times. There is no shared memory, and you have a large overhead since you have to start up python many times. But if you have large calculations you can do in parallell that takes long time, it will be much faster than threads as it can use all cpu cores.
If these processes need to share data, it is more complicated. You need to use special functions to share data, like queues and pipes. If you need to share many MB of data, this takes a lot of time in my experience (10s of milliseconds).
If you need to do large calculations, using numpy functions or numba may be faster than multiple processes, due to good optimizations. But if you need to crunch a lot of data, multiprocessing is usually the way to go