this post was submitted on 13 Oct 2024
91 points (94.2% liked)

ich_iel

2103 readers
464 users here now

Die offizielle Zweigstelle von ich_iel im Fediversum.

Alle Pfosten müssen den Titel 'ich_iel' haben, der Unterstrich darf durch ein beliebiges Symbol oder Bildschriftzeichen ersetzt werden. Ihr dürft euch frei entfalten!


Matrix


📱 Empfohlene Schlaufon-Applikationen für Lassmich


Befreundete Kommunen:


Regeln:

1. Seid nett zueinander

Diskriminierung anderer Benutzer, Beleidigungen und Provokationen sind verboten.

2. Pfosten müssen den Titel 'ich_iel' oder 'ich iel' haben

Nur Pfosten mit dem Titel 'ich_iel' oder 'ich iel' sind zugelassen. Alle anderen werden automatisch entfernt.

Unterstrich oder Abstand dürfen durch ein beliebiges Textsymbol oder bis zu drei beliebige Emojis ersetzt werden.

3. Keine Hochwähl-Maimais oder (Eigen)werbung

Alle Pfosten, die um Hochwählis bitten oder Werbung beinhalten werden entfernt. Hiermit ist auch Eigenwerbung gemeint, z.b. für andere Gemeinschaften.

4. Keine Bildschirmschüsse von Unterhaltungen

Alle Pfosten, die Bildschirmschüsse von Unterhaltungen, wie beispielsweise aus WasistApplikaton oder Zwietracht zeigen, sind nicht erlaubt. Hierzu zählen auch Unterhaltungen mit KIs.

5. Keine kantigen Beiträge oder Meta-Beiträge

ich_iel ist kein kantiges Maimai-Brett. Meta-Beiträge, insbesondere über gelöschte oder gesperrte Beiträge, sind nicht erlaubt.

6. Keine Überfälle

Wer einen Überfall auf eine andere Gemeinschaft plant, muss diesen zuerst mit den Mods abklären. Brigadieren ist strengstens verboten.

7. Keine Ü40-Maimais

Maimais, die es bereits in die WasistApplikation-Familienplauderei geschafft haben oder von Rüdiger beim letzten Stammtisch herumgezeigt wurden, sind besser auf /c/ichbin40undlustig aufgehoben.

8. ich_iel ist eine humoristische Plattform

Alle Pfosten auf ich_iel müssen humorvoll gestaltet sein. Humor ist subjektiv, aber ein Pfosten muss zumindest einen humoristischen Anspruch haben. Die Atmosphäre auf ich_iel soll humorvoll und locker gehalten werden.

9. Keine Polemik, keine Köderbeiträge, keine Falschmeldungen

Beiträge, die wegen Polemik negativ auffallen, sind nicht gestattet. Desweiteren sind Pfosten nicht gestattet, die primär Empörung, Aufregung, Wut o.Ä. über ein (insbesonders, aber nicht nur) politisches Thema hervorrufen sollen. Die Verbreitung von Falschmeldungen ist bei uns nicht erlaubt.


Bitte beachtet auch die Regeln von Feddit.org

founded 5 months ago
MODERATORS
 

(Zumindest in den Fällen, wo sie sich Probleme ausdenken. Wenn sie Scheinlösungen zu realen Problemen anbieten, liegen sie natürlich falsch.)

you are viewing a single comment's thread
view the rest of the comments
[–] aaaaaaaaargh 3 points 1 month ago* (last edited 1 month ago) (6 children)

So etwas wie eine ungültige Aussage gibt es in der Aussagenlogik nicht

Natürlich gibt es die: A => ^A ist der Klassiker. Es ist nicht möglich, dass ein Argument, dessen Prämisse wahr ist, dann eine widersprüchliche Konklusion liefert. Diesen Zustand nennt man Ungültigkeit und das ist elementar für den Aufbau schlüssiger logischer Argumentation.

Ich zitiere mal diese Quelle: Ein deduktives Argument gilt genau dann als gültig , wenn es eine Form annimmt, die es unmöglich macht, dass die Prämissen wahr und die Schlussfolgerung trotzdem falsch ist. Andernfalls gilt ein deduktives Argument als ungültig.

*Ausgenommen sind selbstreferenzierende Aussagen a la “Diese Aussage ist falsch”. Laut Gödel enthält jedes logische System solche unentscheidbare Widersprüche.

Das ist aber kein aussagenlogisches Argument, sondern einfach (A & ^A) in natürlicher Sprache. Gödels Vollständigkeitssatz ist sogar der formale Beweis der semantischen Vollständigkeit der Prädikatenlogik erster Stufe. Unvollständigkeit wird nur auf Systeme höherer Komplexität angewandt, die unvollständige Argumente in ihrer geschlossenen Domäne bzw. Theorie erlauben, weil sie einfach gar nicht dazugehören. Ich habe das Theorem immer als eine Art Unschärfefilter verstanden, aber ich bin auch kein Mathematiker. Ich bin aber sehr sicher, dass Aussagenlogik (z.B Peano) überhaupt axiomatisch notwendig sind, um die Gödel'schen Sätze über Vollständigkeit und Unvollständigkeit zu beweisen.

Es stimmt also, das eine falsche Prämisse ein beliebiges Ergebnis implizieren kann. Die Gesamtaussage ist dann aber wahr.

Auf keinen Fall ist das so. Das wäre ja schlimm. Stell dir mal vor, dann würde ja Trump mit allem, was er an Bullshit redet, am Ende recht haben. Das ist weder theoretisch noch intuitiv richtig.

“Wenn die Erde flach ist (falsch), dann ist die Antarktis eine große Eismauer (falsch).” Diese Aussage ist wahr. Sie sagt aber nichts über die Realität aus, da die Prämisse nicht stimmt. Genauso kann nämlich eine wahre Aussage impliziert werden:

Nein, die Konklusion dieses Arguments ist beliebig, nicht wahr. Es gibt nicht den Zustand "wahr, aber nicht realistisch" in der Logik. Beliebig ist hier korrekt, weil das Argument selbst eben nicht funktioniert und daher die Konklusion völlig irrelevant (=beliebig) ist.

Das ist übrigens auch der Hinterrgund hinter dem beliebten "Ex contradictione sequitur quodlibet" bzw halt "Ex falso quodlibet". Formal sagt dieser Satz: Es gibt Argumente, die in der Aussagenlogik nicht ohne den Verzicht auf Gültigkeit (=Ungültigkeit) geführt werden können.

[–] chrismit3s 2 points 1 month ago (3 children)

In der Aussagen Logik besagt das Gesetz des ausgeschlossen Dritten (tertium non datur wenn man fancy sein will), das jede Aussage entweder wahr oder falsch ist (Es gibt ternäre Logiken die auch "unbekannt" als Wert enthalten). Aussagenlogisch ist "Falsch => Falsch" also wahr.

[–] aaaaaaaaargh 3 points 1 month ago (2 children)

Ja, ich kenne das Gesetz, aber der gilt nur für gültige Argumente. Falsch => Falsch ist in jedem Fall wahr, A => ^A ist aber unerfüllbar (Satz vom Widerspruch) und in der formalen Logik ist das ein ungültiger Zustand. Kann es vielleicht sein, dass du von Schlüssigkeit redest? Ein Argument ist dann schlüssig, wenn es gültig ist (siehe oben) und alle Prämissen wahr sind.

[–] chrismit3s 1 points 1 month ago (1 children)

Gültig war in meiner Logik Vorlesung für X Jahren definiert als "wahr für alle Belegungen". In dem Sinne ist die Formel A auch "ungültig".

Die Eigenschaft die auf A => ^A zutrifft ist unerfüllbar.

Vielleicht waren verschiedene Definition der Auslöser für dieses ganze hin und her

[–] aaaaaaaaargh 2 points 1 month ago

Sehr gut möglich. Ich hab im Rahmen dieser Diskussion hier mehrere Vorlesungsskripte verschiedener FBs und Unis gelesen und das war alles ganz schön unstetig, was man dort so liest.

load more comments (2 replies)