Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
view the rest of the comments
That’s awesome. Now that you mention it I remember reading that supermassive black holes are a source of cosmic radiation too.
If it doesn't have to be energy that's used as such, there's more answers.
Neutrinos stream through us each moment at a flux pretty similar to sunlight. Day and night; they sail right through the Earth for the most part. Most of it is from the sun's core (directly), but some of it is from distant cosmic monsters like supernovae and jets whipping around black holes, and some of it escapes from nuclear reactions on Earth, in particle accelerators and nuclear generators or from decays in nature.
Gravitational waves from distant black hole mergers have been detected on Earth, and they do carry energy.
Meteors hit the Earth, and sometimes they carry enough energy with them to cause damage, like in Chelyabinsk.
You mentioned cosmic rays. The most energetic ones far exceed the energy of anything our accelerators produce, and it's still a mystery where those unusually powerful ones come from.
Stars give out a lot of electromagnetic energy in the form of radio, microwave, infrared, ultraviolet and x-rays as well as visible light, and probably gamma rays too, although I haven't heard anything about that one. Many frequencies of light are heavily or even fully absorbed by the upper atmosphere of Earth, which is part of what makes space telescopes necessary.
Lighting strikes on Jupiter are very noticeable as noise on some radio bands. I'm not actually sure how much of the wind that powers that is the Jupiter equivalent of geothermal, and how much is ultimately from sunlight. I'm guessing it skews to the latter, though.