this post was submitted on 22 Jul 2024
52 points (91.9% liked)

Technology

59554 readers
3198 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
top 12 comments
sorted by: hot top controversial new old
[–] kokesh@lemmy.world 31 points 4 months ago (2 children)

If it's the same quality as other Google AI products, it surely will be great...........

[–] XeroxCool@lemmy.world 27 points 4 months ago (1 children)

Hi, it's me, the Google weather AI. Today will be couldy with a 69% chance of meatballs because I saw that once

[–] kokesh@lemmy.world 8 points 4 months ago

You should drink some window cleaner and eat some sunblock lotion, because there will be sun.

[–] Kekzkrieger 4 points 4 months ago

and will be retiered between the next 12 and 18 months

[–] catch22@startrek.website 19 points 4 months ago (1 children)

Ummm was weather foresting not always done using probalistic interference models, i.e AI?

Weather forecasts have recently felt like they've been less accurate, i.e. you maybe get a good level of confidence for a day, but two days and it might be completely different. This makes sense given the climate is changing and previous models wont fit as well...

Are LLMs going to consume search data for raincoats and air-conditioning to improve the weather forecast. Clearly time to invest in AI now, the revolution is here!

[–] Artyom@lemm.ee 3 points 4 months ago

Weather forecasting does create ensemble models to help constrain their forecasts. They'll adjust some of their inputs in each model, mainly as a way of embedding the uncertainty in the measured data, then run that model and see if it changed.

This resembles AI on one level, but it's at a dramatically different scale. An ensemble may contain a few hundred runs at most, but an AI needs tens of thousands of data points at minimum. In order to make predictions like what google is saying they can do, they'd need to train on billions or maybe trillions of data points.

This is still fundamentally different than ensemble modeling though. Ensembles are physically informed and the perturbations are based on real assumptions. Each model in an ensemble is based on validated physics equations. An AI model would undermine that completely. You can't possibly describe the underlying equations because there aren't any, so you can't analyze its accuracy or propose a more accurate model, you're just stuck with a bunch of coefficients that you'll never understand.

I've worked in climate modeling, and this kind of AI work is nothing more than an electricity sink for at least a decade, maybe forever.

[–] A_A@lemmy.world 12 points 4 months ago

Not an LLM obviously & great work.

[–] TheGrandNagus@lemmy.world 11 points 4 months ago

Because they're both lazily just branded "AI", people might conflate this with an LLM.

Obviously this isn't an LLM implementation.

[–] autotldr@lemmings.world 6 points 4 months ago

This is the best summary I could come up with:


Researchers from Google have built a new weather prediction model that combines machine learning with more conventional techniques, potentially yielding accurate forecasts at a fraction of the current cost.

The model, called NeuralGCM and described in a paper in Nature today, bridges a divide that’s grown among weather prediction experts in the last several years.

It then incorporates AI, which tends to do well where those larger models fall flat—typically for predictions on scales smaller than about 25 kilometers, like those dealing with cloud formations or regional microclimates (San Francisco’s fog, for example).

But the real promise of technology like this is not in better weather predictions for your local area, says Aaron Hill, an assistant professor at the School of Meteorology at the University of Oklahoma, who was not involved in this research.

That means the best climate models are hamstrung by the high costs of computing power, which presents a real bottleneck to research.

While many of the AI skeptics in weather forecasting have been won over by recent developments, according to Hill, the fast pace is hard for the research community to keep up with.


The original article contains 773 words, the summary contains 188 words. Saved 76%. I'm a bot and I'm open source!

[–] geography082@lemm.ee 1 points 4 months ago (1 children)

Uninstalling … ah , wait I don’t have it anyway

[–] Thekingoflorda@lemmy.world 4 points 4 months ago

Not all AI is bad, this isn’t the “guuuuys… I swear, we just need 2 million more graphics cards and AI will be able to automate all your ~~wage slaves~~ employees away” type of AI, this can actually be kinda useful.

[–] VanillaBean@lemmy.world 1 points 4 months ago

Oh man, Google looking for some major new revenue streams from the government who will want this most.